ELVN-001, a Next-Generation, ATP-Competitive ABL1 Tyrosine Kinase Inhibitor for the Treatment of Chronic Myeloid Leukemia

INTRODUCTION

Chronic Myeloid Leukemia (CML) is a myeloproliferative disease that manifests an uncontrolled granulocyte proliferation with a relatively normal differentiation from 80% of patients with CML harboring a reciprocal translocation between chromosomes 9 and 22 within the breakpoint cluster region (BCR) and the abelson tyrosine kinase (ABL) gene.

The result of BCR-ABL1 expression is a fusion protein, BCR-ABL1, which carries tyrosine kinase activity that leads to abnormal activation of downstream signaling pathways, driving abnormal differentiation, growth, and survival of myeloid cells.

Current state of the disease

The development of specific tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL1 kinase has improved the outcome for patients with CML. Specifically, 3 TKIs have been approved to treat this disease: imatinib, dasatinib, and nilotinib.

ELVN-001

- ELVN-001 is a next-generation, ATP-competitive ABL1 tyrosine kinase inhibitor.
- It shows highly selective kinase profile in vitro and in cells.
- It has a unique binding mode that confers selectivity for activated BCR::ABL1 (and T315I).
- It has low turnover by human hepatocytes and in vitro CYP isoform inhibition data predicting low risk of clinically meaningful drug-drug interactions (DDIs).
- It has marked anti-tumor activity at both 50 mg/kg QD and BID in a BCR::ABL1 WT xenograft.
- It has potential to overcome acquired resistance mutations.

RESULTS

Table 1: ELVN-001 in vitro Profile

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50 (nM)</th>
<th>Selectivity (IC50 aminopeptidase/IC50 ABL1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELVN-001</td>
<td>0.04</td>
<td>10000</td>
</tr>
<tr>
<td>Imatinib</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Dasatinib</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Nilotinib</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2: ELVN-001 and Asciminib Have Complementary Mutant Profiles

<table>
<thead>
<tr>
<th>Compound</th>
<th>T415L</th>
<th>T584A</th>
<th>T585P</th>
<th>M287T</th>
<th>M452V</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELVN-001</td>
<td><1</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>Asciminib</td>
<td>>100</td>
<td><1</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
</tbody>
</table>

TARGETING CYTOKINES

- ELVN-001 is effective against both the WT and the T315I mutant BCR::ABL1 both in vitro and in vivo.
- It is highly active against both the WT and the T315I mutant BCR::ABL1 both in vitro and in vivo.
- It has profound selectivity vs the broad kinome in biochemical assays.
- It has high activity against both the WT and the T315I mutant BCR::ABL1 both in vitro and in vivo.
- It has good human clinical PK with a clean safety profile and minimal risk for DDIs.
- It represents a potential best-in-class therapeutic option for patients with CML.

SUMMARY AND CONCLUSIONS

ELVN-001 is a next-generation, ATP-competitive ABL1 tyrosine kinase inhibitor that shows highly selective kinase profile in vitro and in cells.

- It has marked anti-tumor activity at both 50 mg/kg QD and BID in a BCR::ABL1 WT xenograft.
- It has potential to overcome acquired resistance mutations.

- It is a promising therapeutic option for patients with CML.

REPRESENTATIVE REFERENCES

4. Ba/F3 cells expressing the indicated BCR::ABL1 mutations were grown in the absence of IL-3 and subjected to a MTS-based assay to determine cellular proliferation. The exposures of ELVN-001 at 1 mg/kg (+ABT) vs 50 mg/kg (-ABT) reveal that despite markedly lower C trough at the 1 mg/kg dose, ELVN-001 retains activity.

Click here to watch the presentation poster