Trial in Progress: First-in-human study of ELVN-001, a highly selective BCR::ABL1 tyrosine kinase inhibitor, in patients with chronic myeloid leukemia who failed previous TKI therapies

Authors: Timothy P. Hughes,¹ Michael Mauro,² Dong-Wook Kim,³ Susan Branford,¹ Wei Deng,⁴ Qi Wang,⁴ Helen Collins,⁴ Andreas Hochhaus⁵ ¹ South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, SA, Australia;

² Memorial Sloan Kettering Cancer Center, New York, New York, USA;

³ Uijeongbu Eulji Medical Center & Leukemia Omics Research Institute, Eulji Universit. Republic of Korea;

⁴ Enliven Therapeutics, Boulder, Colorado, USA; ⁵ Universitätsklinikum Jena, Germany

INTRODUCTION

Chronic Myeloid Leukemia (CML):

- · CML is a myeloproliferative neoplasm characterized by the dysregulated production and uncontrolled proliferation of maturing granulocytes with relatively normal differentiation¹
- · The BCR::ABL1 oncogene encodes an enzyme, BCR::ABL1 kinase, with constitutive tyrosine kinase activity that activates downstream signaling pathways, leading to abnormal differentiation, growth, and survival of leukemic cells

Current state of the disease:

- · The development of tyrosine kinase inhibitors (TKIs) targeting the BCR::ABL1 kinase have improved the outcome for patients with CML
- · Life expectancy for newly diagnosed patients with chronic phase (CP) CML now approaches the aged-match general population²

Unmet medical needs and challenges to standard of care:

- · Approximately 1 in 5 patients switches therapy within the first year and ~40% of patients switch in the first 5 years³
- · Therapeutic outcomes and quality of life of patients are affected by adverse events (AEs) or intolerance to existing TKIs, at least in part, due to off-target effects on other tyrosine kinases, such as SRC, PDGFR, c-KIT, KDR (VEGFR2), and CSF-1R4
- · Loss of efficacy in patients with CML may be due to point mutations in the BCR::ABL1 kinase which impair TKI binding⁵
- · One of the most frequent mutations is the T315I mutation, which occurs in approximately 20% of patients with resistant CML⁶

Solution:

· ELVN-001 is a potent, highly selective, active-form inhibitor of BCR::ABL1 that potentially affords an improved therapeutic index for patients with or without the T315I mutation

BACKGROUND AND PRECLINICAL DATA

ELVN-001 binds to the ATP-binding sites in the kinase domain of activated BCR::ABL1 (Figure 1). As shown in Figure 2, ELVN-001 is a type 1 binder with the p-loop of BCR::ABL1 protein adopting a very unique "folded-in" conformation. Unlike approved TKIs, ELVN-001 is a highly selective small-molecule inhibitor of BCR::ABL1, which may avoid various AEs associated with approved TKIs due to off-target activity (Table 1). Through this design, ELVN-001 has the potential to be a drug with a wider therapeutic index and provide better efficacy and quality of life to patients. In addition to native BCR::ABL1, ELVN-001 also inhibits many mutations of BCR::ABL1, including the prevalent mutation T315I.

A comprehensive nonclinical program has been conducted for ELVN-001. Nonclinical data suggest that ELVN-001 has a favorable absorption, distribution, metabolism, elimination, and pharmacokinetic (PK) profile, which warrants its clinical development. ELVN-001 has a low risk of QTc prolongation and a favorable in vitro drug-drug interaction (DDI) profile. ELVN-001 has a low risk of DDI as a victim or perpetuator, particularly CYP enzyme-mediated interactions. ELVN-001-101 is a first-in-human study to evaluate the safety, tolerability, and preliminary anti-CML activity of ELVN-001 in patients with CP-CML with and without T315I mutations.

ELVN-001 Is a Selective **Active-Site, Active-Form Inhibitor of BCR::ABL1**

Figure 1. Site of action of ELVN-001 and other BCR::ABL1 inhibitors. All approved small-molecule BCR::ABL1 TKIs (imatinib, bosutinib, nilotinib, dasatinib, and ponatinib) work through interacting with the ATP-binding site, which in turn inhibits the kinase activity. In contrast, asciminib, a fourth-generation TKI, is designed to allosterically inhibit BCR::ABL1 by binding to the myristoyl pocket, which is distal to the active site.

Unique Type 1 Binding Mode Confers Selectivity for Activated BCR::ABL1 (and T315I)

Narrow "Selectivity Tunnel"

Unique P-Loop "Folded-In" Conformation

PDGFRb

>10,000

89

720

7.1

7,900

VEGFR2

>10,000

4.8

2,900

>1,000

>10,000

overlay with dasatinib (grey)

FLT3wt

>10,000

3.8

>10.000

>1,000

4,700

Table 2. Cellular Phosphorylation IC_{50} (nM)

T315I crystal structure, surface view

cSRC

>10,000

630

>10,000

10

16

T315I shown as spheres (orange)

Figure 2. Unique Type 1 Binding Mode to Activated BCR::ABL1. The X-ray structure illustrates that ELVN-001 is a type 1 binder (DFG-in) with the p-loop of the ABL protein adopting a very unique "folded-in" conformation, while accommodating T315I. This is in contrast to promiscuous type 1 inhibitors such as dasatinib which bind the ABL protein in the more common p-loop "extended" conformation, and also clash with T3151.

Table 1. ELVN-001 in vitro Profile

	Asciminib	Ponatinib	Nilotinib	ELVN-001	
KCL-22 (BCR::ABL1 ^{wt}) cytotox IC ₅₀ (50% human serum)	7 nM	1 nM	90 nM	19 nM	Potential correlation to MMR in humans BCRP may play a role in off-target resistance
KCL-22 (BCR::ABL1 ^{T315I}) cytotox IC ₅₀ (50% human serum)	>1,150 nM	14 nM	>10,000 nM	131 nM	
K-562 (BCR::ABL1 ^{wt}) cytotox IC ₅₀ (50% human serum)	101 nM	4 nM	228 nM	65 nM	
K-562 pCRKL IC ₅₀ (100% human serum)	NA	36 nM	1,080 nM	112 nM	
HL-60 cytotox IC ₅₀ (10% FBS)	12,200 nM	366 nM	5,050 nM	3,550 nM	
Human hepatocyte stability, extraction ratio	60	62	62	0	
Plasma protein binding (% unbound)	~2	<1	<1	40	
CYPs (% inhibition @ 10 μM)	AII <50%	All <50%	2C8, 2C9, 3A4, 2C19 >50%	All <50%	
hERG IC ₅₀	25 μΜ	2.3 μΜ	0.13 μΜ	>30 µM	
Breast Cancer Receptor Protein (BCRP) substrate	Yes	Yes	Yes	No	

· In vitro activity against both native BCR::ABL1 and T315I cell lines · Low hepatic extraction ratio suggests the potential for good human PK, which would enable maximum target coverage over the full 24-hour dosing period

· In vitro data suggest low likelihood of clinically meaningful DDI

· ELVN-001 has a selective kinase profile \cdot 372 kinases screened at 1 μ M compound (100 μ M ATP)

ELVN-001

Ponatinib

Nilotinib

Dasatinib

Bosutinib

· Kinases with >50% inhibition selected for IC₅₀ determination

· >100x window vs all but 2 kinases profiled

>10,000

200

0.6

1,000

· ELVN-001 is also clean (>10 μM) in an *in vitro* safety panel of >130 receptors

Table 3. Kinase Selectivity (100 µM ATP)

ARG may result in less toxicity?

TRIAL DESIGN

ELVN-001-101: A Phase 1, Open-label, Multicenter, Dose-escalation, and Expansion Study

Primary Trial Objective:

Determine the recommended doses for expansion (RDE) and to evaluate the safety and tolerability of ELVN-001

Secondary Trial Objective:

To assess the PK profile of ELVN-001 and preliminary efficacy

Primary Endpoints:

· Incidence of DLT, AEs, electrocardiogram, and lab abnormalities

Key Inclusion Criteria:

adverse effects of prior therapy

Prior marrow transplant is allowed

* Less than 10% of patients in the late line setting9

· Adults with CP-CML who are intolerant or have failed (as per

Eastern Cooperative Oncology Group performance status 0-2

· Adequate bone marrow, renal, and liver function, and resolved

· All mutations, including T315I. Patients with E255, Y253H, G250,

F317L, or Q252 mutations* may enroll with Sponsor approval

known to be active for treatment of their CML TKI therapy

European LeukemiaNet 2020 Recommendations)⁸ available TKIs

Secondary Endpoints: · Molecular response

· PK parameters

SUMMARY

- · Highly selective small-molecule inhibitor of BCR::ABL1
- · Can target the most common CML mutation, T315I
- · Favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile
- · Less off-target activity may improve safety and tolerability, which may result in a wider therapeutic index and provide better quality of life to patients
- · Low risk of QTc prolongation and no preclinical cardiotoxicity
- · Potentially avoid drug-drug interactions, particularly mediated by CYP enzymes

Conclusion:

· Nonclinical data support this first-in-human study, which is evaluating dosing, safety, tolerability, PK profile, and preliminary efficacy of ELVN-001 in CP-CML patients with and without T315I mutation

